
Learning Not to Regret
David Sychrovský 1,2 Michal Šustr 2,5 Elnaz Davoodi 3

Michael Bowling 4 Marc Lanctot 3 Martin Schmid 1,5

1Charles University 2Czech Technical University 3Google DeepMind

4University of Alberta 5EquiLibre Technologies

Summary

We accelerate Nash-equilibrium approximation on a distribution of games bymeta-
learning regret minimizers, often by an order of magnitude.

Abstract

The literature on game-theoretic equilibrium finding predominantly focuses on single games or their

repeated play. Nevertheless, numerous real-world scenarios feature playing a game sampled from a

distribution of similar, but not identical games, such as playing poker with different public cards or

trading correlated assets on the stock market. As these similar games feature similar equilibra, we in-

vestigate a way to accelerate equilibrium finding on such a distribution. We present a novel “learning

not to regret” framework, enabling us to meta-learn a regret minimizer tailored to a specific distribu-

tion. Our key contribution, Neural Predictive Regret Matching (NPRM), is uniquely meta-learned to

converge rapidly for the chosen distribution of games, while having regret minimization guarantees

on any game. We validated our algorithms’ faster convergence on a distribution of river poker games.

Our experiments show that the meta-learned algorithms outpace their non-meta-learned counter-

parts, achieving more than tenfold improvements.

Meta-Learning Framework

On a distribution of regret minimization tasks G, we aim to find an online algorithm mθ with some

parameterization θ that efficiently minimizes the expected external regret after T steps. We thus

want, given some observed rewards {xτ}t−1
τ=1, to minimize the following loss

L(θ) = E
g∼G

[
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where σt
θ is the strategy selected at step t by the online algorithm mθ, and r(σ, x) = x − 〈σ, x〉1

is the instantaneous regret. We train a recurrent neural network θ to minimize (1). By utilizing a

recurrent architecture we can also represent algorithms that are history and/or time dependent.

The choice to minimize external regret in particular is arbitrary. This is because the rewards {xτ}T
τ=1

that come from the environment are constant w.r.t. θ and the derivative of any element of the

cumulative regret vector RT =
∑T

t=1 rt is thus the same, meaning
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Consequently, if the objective (1) is reformulated using other kinds of regrets, it would result in

the same meta-learning algorithm. This is because regrets measure the difference between reward

accumulated by some fixed strategy, and by the algorithm mθ. Since the former is a constant at

meta-train time, minimizing (1) is equivalent to maximizing the reward 〈σt, xt〉 the algorithm mθ

gets at every t ≤ T in a task g ∼ G, given the previous rewards {xτ}t−1
τ=1, similar to policy gradient.

Algorithms and Their Computational Graphs

Neural online algorithm (NOA) directly outputs strategy σt, and is not guaranteed to minimize regret.

Neural predictive regret matching (NPRM) uses the predictive regret framework [1] to meta-learn the

prediction. NPRM combines the strongest regret minimization guarantees with policy gradient.
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Figure 1. Neural online algorithm (NOA; left), and Neural predictive regret matching (NPRM; right). The gradient flows

only along the solid edges. The h denotes the hidden state of the neural network.

Empirical Evaluation

We evaluate on rock_paper_scissors, a matrix game where one matrix element is randomized. Fur-

thermore, river_poker is a distribution of river endgames of Texas Hold’em Poker with ≈ 40k infor-

mation states. The public cards and the beliefs are drawn at random.
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Figure 2. Comparison of non-meta-learned algorithms (RM, PRM) with meta-learned algorithms (NOA, NPRM), on a small

matrix game and a large sequential game and for a single fixed game versus a whole distribution over games. The figures

show exploitability of the average strategy σ. The y-axis uses a logarithmic scale. Vertical dashed lines separate two

regimes: training (up to T steps) and generalization (from T to 2T steps). Colored areas show standard errors.

Relative Speedup

We tracked how many steps it takes to reach

a solution of specified target quality. When

used within continual resolving framework,

one typically sets a target solution quality to

reach at each iteration. Both NOA and NPRM

outperform (P)RM for all target exploitabili-

ties, with better solutions requiring an order

of magnitude less steps.

Target 4 · 10−1 10−1 6 · 10−2 2 · 10−2

RM 20 128 212 615

PRM 36 158 261 793

NOA 1 18 41 157

NPRM 1 16 26 118

Table 1. Number of steps each algorithm requires to

reach target exploitability on river_poker(sampled).

Convergence in Policy Space

To further illustrate the differences between the meta-learned algorithms and (P)RM, we plot the

current and average strategies selected by each algorithm on rock_paper_scissors(sampled). Both

NOA and NPRM are initially close to the equilibrium and converge relatively smoothly. In contrast,

(P)RM visit large portion of the policy space even in later steps, making the convergence slower.
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Figure 3. For each algorithm, we show the trajectories of current strategies (top row) and average strategies (bottom row)

on rock_paper_scissors (sampled) for 2T = 128 steps. The red cross shows the equilibrium of the sampled game.

The trajectories start in dark colors and get brighter for later steps. The blue polygon is the set of all equilibria in the

distribution rock_paper_scissors (sampled). Notice how the strategies of our meta-learned algorithms begin in

the polygon and refine their strategy to reach the current equilibrium. In contrast, (P)RM are initialized with the uniform

strategy and visit a large portion of the policy space.

Computational Requirements

Using the neural network in our algorithms in-

curs an additional computational overhead. We

present evaluation as a function of time, rather

than the number of steps. Our algorithms

can outperform their non-meta-learned counter-

parts, even when accounting to this extra cost.

The difference is greater in river_poker, since
each interaction with the environment is more

expensive.
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Figure 4. Comparison of regret minimization algorithms as

a function of wall time, rather than number of steps.

Out of Distribution Convergence

The performance can deteriorate when the

meta-learned algorithms are deployed on a dis-

tribution they were not meta-learned on. How-

ever, in contrast to NOA, NPRM is guaranteed to

minimize regret on an arbitrary task.
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Figure 5. Comparison of the converge guaran-

tees of NOA and NRPM. Both were trained on

rock_paper_scissors (sampled). Left figure shows

NOA and NPRM can out outperform (P)RM on the distri-

bution it was trained on. However, right figure shows that

when evaluated on uniform_matrix_game (sampled),

the performance of NOA deteriorates significantly.

Conclusion

We introduced two new meta-learning algorithms for regret minimization in a new learning not to

regret framework. Our algorithms are meta-learned to minimize regret fast against a distribution of

potentially adversary environments. We evaluated our methods in games, where we minimize regret

against an (approximate) value function and measure the exploitability of the resulting strategy. Our

experiments show that our meta-learned algorithms attain low exploitability approximately an order

of magnitude faster than prior regret minimization algorithms.

In the future, we plan to extend our results to the self-play settings. We also plan to apply ourmethods

with hindsight rationality [3] for gameswhich change over time. This is also an opportunity to combine

our offline meta-learning with the online meta-learning of [2].
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